Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches.
نویسندگان
چکیده
Local changes in microtubule organization and distribution are required for the axon to grow and navigate appropriately; however, little is known about how microtubules (MTs) reorganize during directed axon outgrowth. We have used time-lapse digital imaging of developing cortical neurons microinjected with fluorescently labeled tubulin to follow the movements of individual MTs in two regions of the axon where directed growth occurs: the terminal growth cone and the developing interstitial branch. In both regions, transitions from quiescent to growth states were accompanied by reorganization of MTs from looped or bundled arrays to dispersed arrays and fragmentation of long MTs into short MTs. We also found that long-term redistribution of MTs accompanied the withdrawal of some axonal processes and the growth and stabilization of others. Individual MTs moved independently in both anterograde and retrograde directions to explore developing processes. Their velocities were inversely proportional to their lengths. Our results demonstrate directly that MTs move within axonal growth cones and developing interstitial branches. Our findings also provide the first direct evidence that similar reorganization and movement of individual MTs occur in the two regions of the axon where directed outgrowth occurs. These results suggest a model whereby short exploratory MTs could direct axonal growth cones and interstitial branches toward appropriate locations.
منابع مشابه
Common mechanisms underlying growth cone guidance and axon branching.
During development, growth cones direct growing axons into appropriate targets. However, in some cortical pathways target innervation occurs through the development of collateral branches that extend interstitially from the axon shaft. How do such branches form? Direct observations of living cortical brain slices revealed that growth cones of callosal axons pause for many hours beneath their co...
متن کاملAxon guidance by growth cones and branches: common cytoskeletal and signaling mechanisms.
Growing axons are guided to appropriate targets by responses of their motile growth cones to environmental cues. Interstitial axon branching is also an important form of axon guidance in the mammalian CNS. Visualization of growing axons in cortical slices and in dissociated cortical cultures showed that growth cone pausing behaviors demarcate sites of future axon branching. Studies of vertebrat...
متن کاملBasic Fibroblast Growth Factor Elicits Formation of Interstitial Axonal Branches via Enhanced Severing of Microtubules
The formation of interstitial axonal branches involves the severing of microtubules at sites where new branches form. Here we wished to ascertain whether basic fibroblast growth factor (bFGF) enhances axonal branching through alterations in proteins involved in the severing of microtubules. We found that treatment of cultured hippocampal neurons with bFGF heightens expression of both katanin an...
متن کاملDiverse Modes of Axon Elaboration in the Developing Neocortex
The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboratio...
متن کاملMicrotubule behavior during guidance of pioneer neuron growth cones in situ
The growth of an axon toward its target results from the reorganization of the cytoskeleton in response to environmental guidance cues. Recently developed imaging technology makes it possible to address the effect of such cues on the neural cytoskeleton directly. Although high resolution studies can be carried out on neurons in vitro, these circumstances do not recreate the complexity of the na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 20 شماره
صفحات -
تاریخ انتشار 1999